计算复杂性简介我们当然不可能也不必要就一个个具体问题去研究它的计算复杂性,而是依据进行计算的难度去研究各种计算问题之间的联系,按复杂性把问题分成不同的类:常见的时间复杂度按数量级递增排列依次为:常数 O(1)、对数阶 O(logn)、线性阶 O(n)、线性对数阶 O(nlogn)、平方阶 O(n2)、立方阶 O(n3)、…、k 次方阶 O(nk)、指数阶 O(2n)
显然,时间复杂度为指数阶 O(2n) 的算法效率极低,当 n 值稍大时就无法应用
类似于时间复杂度的讨论,一个算法的空间复杂度 (Space Complexity) S(n) 定义为该算法所耗费的存储空间,它也是问题规模 n 的函数

渐近空间复杂度也常常简称为空间复杂度
算法的时间复杂度和空间复杂度均称为算法的复杂度
注:为了表达的方便,计算机上的复杂度分析中使用的对数函数 log(n) 一般指取以 2 为底的对数所谓"计算复杂性",通俗说来,就是用计算机求解问题的难易程度
其度量标准:一是计算所需的步数或指令条数(即时间复杂度),二是计算所需的存储单元数量(即空间复杂度)
以上内容由大学时代综合整理自互联网,实际情况请以官方资料为准。