谐波分析研究背景高精度谐波分析对电能计量、谐波潮流计算、电力系统谐波补偿与抑制等有重要意义
采用快速傅里叶变换(fastFouriertransform,FFT)算法进行谐波分析,非整周期截断时产生频谱泄漏和栅栏效应,影响谐波分析精度
针对FFT算法的不足,国内外学者提出了一系列加窗插值FFT算法
V.K.Jain等提出基于矩形窗的插值算法,可有效提高计算精度
此后,Hanning窗、Blackman-Harris窗、Rife-Vincent(I)窗、Nuttall窗和矩形卷积窗等被提出并被运用到FFT谐波分析中
基于余弦组合窗的插值FFT算法、基于矩形窗的多谱线插值算法和采用多项式拟合的双谱线插值方法等高精度插值FFT算法相继被提出,提高了谐波分析精度
采用矩形窗、三角窗等基本窗函数和广义余弦窗函数对信号加权,对于动态信号分析效果受到窗函数固定旁瓣性能的制约
Kaiser窗可定义一组可调的窗函数,其主瓣能量和旁瓣能量的比例近乎最大,且可自由选择主瓣宽度和旁瓣高度之间的比重
研究对信号在整周期截断和非整周期截断时的频谱进行分析,讨论Kaiser窗的频谱特性,提出基于Kaiser窗插值FFT的电力谐波分析算法,建立奇次、偶次谐波求解的数学模型和实用的插值修正公式,推导信号基波与各次谐波频率、幅值和初相角计算式,采用包含21次谐波的动态信号仿真和三相谐波电能表应用实践进一步证明研究方法的有效性和准确性
以上内容由大学时代综合整理自互联网,实际情况请以官方资料为准。