直言命题详解

直言命题详解单称命题是直言命题中的一类特殊形式,可分为两种:一种是主项是专名,如“苏格拉底是人”;另一种是主项是附有限制的普遍概念,如“昨天我谈到的那个人是作家”

单称命题有肯定和否定的区别,传统逻辑认为其形式分别为 : 这个S是P;这个S不是P

亚里士多德虽论及单称命题 ,但却没有谈到有关单称命题的推理

后来许多传统逻辑读本在论述推理时,由于单称命题和全称命题都是判定一个主项外延的的全部,所以常把单称命题划归到全称命题,因此,六种命题就成为四种类型

全称肯定命题反映了主项的所有外延全都具有某种性质,表示形式为:所有S是P,缩写为SAP,简称A命题

全称否定命题反映了主项的所有外延全都不具有某种性质,表示形式为:所有S不是P,缩写为SEP,简称E命题

特称肯定命题反映了主项的一部分外延都具有某种性质,表示形式为:有的S是P,缩写为SIP,简称I命题

特称否定命题反映了主项的一部分外延全都不具有某种性质,表示形式为:有的S不是P,缩写为SOP,简称O命题

以上内容由大学时代综合整理自互联网,实际情况请以官方资料为准。

相关