受体阻滞剂β受体阻滞剂β受体又可分为β1、β2受体

受体阻滞剂β受体阻滞剂β受体又可分为β1、β2受体,广泛地存在于心脏(以β1为主)和血管(以β2为主)

凡能阻断β受体的药物称为β受体阻滞剂

β受体阻滞剂是能选择性地与β肾上腺素受体结合、从而拮抗神经递质和儿茶酚胺对β受体的激动作用的一种药物类型

肾上腺素受体分布于大部分交感神经节后纤维所支配的效应器细胞膜上,其受体分为 3 种类型, 即β1受体、β2受体和β3受体

β1受体主要分布于心肌, 可激动引起心率和心肌收缩力增加;β2受体存在于支气管和血管平滑肌, 可激动引起支气管扩张、血管舒张、内脏平滑肌松弛等;β3受体主要存在于脂肪细胞上,可激动引起脂肪分解

这些效应均可被 β受体阻滞剂所阻断和拮抗

β-受体阻滞作用:β-受体阻滞药主要是与儿茶酚胺对β-受体起竞争性结合,从而阻断儿茶酚胺的激动和兴奋作用

心血管系统:阻滞心脏β1-受体而表现为负性变时、负性变力、负性传导作用而使心率减慢,心肌收缩力减弱,心排血量下降,血压略降而导致心肌氧耗量降低,延缓窦房结和房室结的传导,抑制心肌细胞的自律性,使有效不应期相对延长而消除因自律性增高和折返激动所致的室上性和室性快速性心律失常,由于可以延长房室结传导时间而可以表现为心电图的P-R间期延长

支气管平滑肌:β2-受体阻滞可使支气管平滑肌收缩而增加呼吸道阻力,故在支气管哮喘或慢性阻塞性肺疾病患者,有时可加重或诱发哮喘的急性发作

但这种作用对正常人影响较少,选择性β1-受体阻滞药此作用较弱

然而β2-受体阻滞引起的血管平滑肌收缩可阻止和治疗偏头痛的发作

代谢:β1-受体阻滞可抑制交感神经所引起的脂肪分解,β2受体阻滞则可拮抗肝糖原的分解

β-受体阻滞药与α-受体阻滞药合用可拮抗肾上腺素的升高血糖作用

正因为如此,糖尿病病人接受胰岛素或口服降糖药治疗的同时应用β-受体阻滞药可发生低血糖,并延缓血糖水平的恢复,同时还会掩盖低血糖症状(如心悸、心动过速、震颤、饥饿感均不明显,然而多汗常可成为警觉的低血糖征象)

肾素:通过阻滞肾小球旁器细胞的β1-受体抑制肾素的释放而形成其降压机制之一

内在拟交感活性:某些β-受体阻滞药对β1-受体或β2-受体或二者均具有部分激动作用而称之为内在拟交感活性(ISA)

具有ISA较不具有ISA的β-受体阻滞药对心脏的负性肌力作用、负性频率作用和收缩支气管平滑肌的作用均较弱

理论上这种潜在的ISA对心输出量有限的老年患者可能有益,但对于缺血性心脏病患者,适当较慢的心率更为适合

另外ISA潜在的缺点是夜晚刺激中枢神经系统而表现交感张力增高时出现多梦、睡眠不安

除上者外,β-受体阻滞药尚具有膜稳定作用、减少房水形成、有降低眼内压以及普萘洛尔的抗血小板聚集作用等

高血压病:β受体阻滞剂适用于不同严重程度的高血压,尤其是心率较快的中青年患者,也适用于合并有心绞痛、心肌梗死后、快速心律失常、充血性心力衰竭和妊娠的高血压患者

冠心病:β受体阻滞剂具有较强的降低心肌耗氧作用和拮抗儿茶酚胺的致心律失常作用,提高室颤阈,抗血小板和减轻心脏血管损害,降低心肌再梗死率,改善梗死后左室重构

心力衰竭:大规模β受体阻滞剂实验(CIBISⅡ、MERIT-HF及COPERNICUS)证明,长期应用β受体阻滞剂,可降低心力衰竭患者总体死亡率、心血管病死亡率、心源性猝死以及心力衰竭恶化引起的死亡,通常从小剂量开始,逐渐加量以达到最大耐受剂量

但在有包括肺底啰音在内的多种体征的急性心力衰竭患者中使用β受体阻滞剂应慎重

心律失常:β受体阻滞剂常用于快速性心律失常的治疗,包括窦速、房早、室早、房速、室上性心动过速及室速

主动脉夹层:内科治疗常联合应用β受体阻滞剂和硝普钠,减少血流对主动脉的冲击,减少左心室的收缩速率以减缓病情进展

心肌病:在有症状的肥厚性心肌病患者中,β受体阻滞剂是首选治疗,可控制心室率,降低心肌收缩力,使心室充盈及舒张末容量最大化,改善心肌顺应性

β受体阻滞剂用于扩张性心肌病伴或不伴心力衰竭的治疗,可减轻症状、预防猝死和改善预后

遗传性QT延长综合征:(LQTS):除非有严重的禁忌证,β受体阻滞剂是当今对有症状的LQTS患者的首选治疗

若无绝对禁忌证,推荐终身服用最大耐受剂量的β受体阻滞剂,可明显降低心血管事件的发生

医学认为,对于无症状的LQTS患者,也推荐应用β受体阻滞剂

左房室瓣脱垂:对于有症状的左房室瓣脱垂患者,β受体阻滞剂通常作为首选药物

以上内容由大学时代综合整理自互联网,实际情况请以官方资料为准。

相关