卫星大地测量学动力法

卫星大地测量学动力法根据卫星在轨道上受摄动力的运动规律,利用地面站对卫星的观测数据,可以同时计算卫星轨道根数、地球引力场参数和地面观测站地心坐标

地球引力、大气阻力、日月引力、太阳光压、地球潮汐(海潮、固体潮和大气潮)等对卫星轨道都有影响,研究和测定卫星轨道在这些影响之下的变化,是卫星大地测量动力法的基础

如果地球是一个质量均匀分布的圆球,则地球对卫星的引力相当于假定地球质量集中于其中心时对卫星的引力

按开普勒(J.Kepler)的行星运动定律,这时卫星的轨道是一个不变化的椭圆,地球位于其焦点之一

这个轨道椭圆由6个轨道根数i、Ω、ɑ、e、ω和T来确定

i为轨道倾角,即轨道平面同赤道平面的夹角;Ω为升交点的赤经,即卫星轨道投影到天球上,同天球赤道相交的两点中,卫星由南向北通过赤道的那一点的赤经;ɑ和e分别为轨道椭圆的长半径和偏心率;ω为近地点角距,即近地点到升交点的角距;T为卫星通过近地点的时刻;v为真近点角,即卫星到近地点的角距,有的文献以它代替T作为轨道根数

这6个轨道根数中ɑ和e可确定轨道椭圆的形状和大小,i和Ω确定轨道面相对于地球的空间位置,ω说明轨道椭圆在空间的定向,T是推算卫星位置的时间起点

实际上,地球的质量分布极不均匀,它的形状虽近似于一个旋转椭球,但很不规则,因而地球引力场非常复杂

卫星在绕地球运行中,除受到地球不规则引力场的摄动外,还受到大气阻力、日月引力、太阳光压和地球潮汐等摄动力的作用,因而卫星轨道不是一个不变的椭圆,其形状、大小和在空间的位置都在不断地变化

任一瞬间同这个轨道相密切的椭圆称密切椭圆

在摄动情况下,认为卫星轨道是随时间变化的瞬时椭圆

卫星的运动方程是一个非常复杂的微分方程,可按级数展开法求解

此法把某一时刻t0的密切椭圆轨道作为固定的参考轨道,而把时刻 t的密切椭圆轨道根数表示为参考轨道根数同摄动项之和

摄动项分为短周期项、长周期项和长期项

一般以地球引力位球谐函数展开式的二次带谐系数作为一阶小量,而按所达到的精度分为一阶解和二阶解

这种解法通称为分析法

由于分析法公式较烦,近年来一般都采用数值积分法直接解卫星运动方程,或者采用半分析法与数值积分法相结合的方法,即短周期摄动用分析法计算,长期和长周期摄动用数值积分法计算

地球引力位通常以球谐函数展开式表示,球谐函数的系数称为地球引力场参数,其中同经度无关的系数称为带谐系数,同经度有关的系数称为田谐系数

利用这些参数同观测数据(方向、距离、距离差、距离变率和卫星至海洋面的高)之间的关系组成观测方程,就可以同时推求出测站的地心坐标,卫星轨道根数和地球引力场参数

由于观测方程中含有大量的待定参数,所以通常把轨道根数和大地测量参数(引力场参数和测站地心坐标)分开解算

地球引力位的带谐部分主要引起卫星轨道的长期和周期摄动,田谐部分只产生幅度较小的短周期摄动

从卫星运动理论知道,地球引力位的偶次带谐系数引起卫星轨道升交点赤经和近地点角距的长期摄动,奇次带谐系数引起轨道偏心率和倾角的长周期摄动

故一般根据长期观测所获得的升交点赤经和近地点角距的变化推求偶次带谐系数,而根据轨道偏心率和倾角的变化推求奇次带谐系数

计算时必须事先消除非地球引力场的各种摄动因素的影响

为了削弱观测方程系数之间的相关性,须选取不同倾角的卫星进行观测,并须经过一定时间的观测,积累几个月或几个星期的卫星观测数据,这样就可单独求定带谐系数

田谐系数的求定比较困难,因为它们引起的摄动周期较短,振幅也较小

只有由全球分布均匀的若干测站,对不同轨道的卫星进行精密观测,才能求定田谐系数

这时观测方程中,带谐系数一般可作为已知参数;待定参数除了田谐系数外,还包括测站坐标和卫星轨道根数等项

由于卫星观测数据只能反映地球引力场的全球特征,而地面重力测量数据可提供引力场的精细结构,所以只有把两种观测数据综合解算,才能求得地球引力场比较精确的模型

以上内容由大学时代综合整理自互联网,实际情况请以官方资料为准。

相关