光学信息处理半色调预处理和图像假彩化

光学信息处理半色调预处理和图像假彩化实际问题中常遇到一些线性处理无法解决的问题

怎样突出图像中某一灰度等级,如何从相乘性噪声中提取信号,傅里叶光学对这些问题就变得无能为力

这些问题都是非线性问题

所谓非线性系统是指输出图像的光强不再与输入图像光强保持正比关系

为实现非线性处理,可在光学系统中放入非线性光学元件,或通过预处理方法实现某种非线性变换,再由线性系统滤波处理

照相胶片就是一种非线性元件,利用胶片感光特性曲线的非线性控制反差度(γ值),可实现正、负幂次非线性关系

非线性元件是非线性光学材料(如可饱和吸收介质、光色材料、电光晶体等)在强光下的非线性行为,可用在频域或空域进行诸如阈值控制等非线性处理,但这些方法都不够灵活

灵活性较大的方法是半色调预处理方法

此法来自印刷制版技术,通过半色调屏对图像进行翻拍,利用高反衬度胶片的限幅性质,把连续色调图像变为由点阵(二维)或线阵(一维)组成的黑白两种色调的照片,称为“半色调照片”

原图像中灰度信息转变为半色调照片中不同面积的点阵(二维)或不同宽度的线阵(一维)

这个过程实现了第一个非线性变换,然后把半色调照片放在线性光学处理系统中,在滤波平面用小孔选取不同衍射级次,在输出平面上实现第二个非线性变换,使输出光强非线性地依赖于脉宽,从而也非线性地依赖于原图像灰度等级

设计不同类型的半色调屏,将能实现不同的非线性变换

 利用半色调预处理方法,比较成功地实现了图像等密度轮廓显示、密度分割、假彩色编码、从相乘性噪声中分离出信号的对数滤波、指数运算、二次方和二次方根运算、二维模数转换等运算

这种方法已在医学、遥感等图像处理中得到应用

 上面是从数学运算角度对光学信息处理所作的分类

同样从相干性的角度,也能把光学信息处理系统分为相干与非相干两大类

在相干光系统中光场按复振幅叠加,因此可以进行正值、负值和复数运算,在非相干系统中光场按光的强度叠加,光强是不能有负值的,因此在非相干光处理系统中必需附加一恒定光强作为偏置值(类似于电子学中直流偏置)以利于双极性函数的运算

当然这样做会降低图像的反衬度,但是从降低相干噪声的角度来看,非相干光系统比相干光系统要优越,因为一个典型的相干光系统所有光线来自一个点光源,对信息的传递是单通道的,通道中的噪声(光学元件的缺陷、气泡、刻痕,材料不均匀,或尘埃等经相干光衍射和干涉后所产生的斑纹)叠加在图像上,相反地,非相干光系统可以采用扩展光源,扩展光源相当于由许多点光源组合而成

每个点光源都有自己的信息传递通道,通道中的噪声对某一通道也许是严重的,但对其他通道就不一定是严重的

由于这些点光源又是互相独立的,因此除了物平面和像平面上的噪声外,通道中噪声被平均掉,这样多余通道的传递结果能提高图像的信噪比,正是这个原因,非相干光系统有着广阔的发展前景

 

以上内容由大学时代综合整理自互联网,实际情况请以官方资料为准。

相关