模糊数学产生

模糊数学产生现代数学是建立在集合论基础之上的

集合论的重要意义就在于它能将数学的抽象能力延伸到人类认识过程的深处:用集合来描述概念,用集合的关系和运算表达判断和推理,从而将一切现实的理论系统都纳入集合描述的数学框架中

毫无疑问,以经典集合论为基础的精确数学和随机数学在描述自然界多种客观现象的内在规律中,获得了显著的效果

但是,和随机现象一样,在自然界和人们的日常生活中普遍存在着大量的模糊现象,如多云、阴天、小雨、大雨、贫困、温饱等

由于经典集合论只能把自己的表现力限制在那些有明确外延的现象和概念上,它要求元素对集合的隶属关系必须是明确的,不能模棱两可,因而对于那些经典集合无法反映的外延不分明的概念,以前人们都是尽量回避它们

然而,随着现代科技的发展,我们所面对的系统日益复杂,模糊性总是伴随着复杂性出现;此外人文、社会学科及其他“软科学”的数学化、定量化趋向,也把模糊性的数学处理问题推向中心地位;更重要的是,计算机科学、控制理论、系统科学的迅速发展,要求计算机要像人脑那样具备模糊逻辑思维和形象思维的功能

凡此种种,迫使人们再也无法回避模糊性,必须寻求途径去描述和处理客观现象中非清晰、非绝对化的一面

1965年,美国控制论专家扎德Zadeh(Lotfi A.Zadeh)教授在Information and Control杂志上发表了题为Fuzzy Sets的论文,提出用“隶属函数”来描述现象差异的中间过渡,从而突破了经典集合论中属于或不属于的绝对关系

Zadeh教授这一开创性的工作,标志着数学的一个新分支——模糊数学的诞生

模糊数学的基本思想就是:用精确的数学手段对现实世界中大量存在的模糊概念和模糊现象进行描述、建模,以达到对其进行恰当处理的目的

需要注意的是:模糊数学是以不确定性的事物为其研究对象的

模糊集合的出现是数学适应描述复杂事物的需要,Zadeh的功绩在于用模糊集合的理论将模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处.就能得到弥补

因此,模糊数学不是“模模糊糊”的,是非常严密的;此外,也不是什么对象都要用模糊数学去讨论

 

以上内容由大学时代综合整理自互联网,实际情况请以官方资料为准。

相关